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What is a “Systems Approach” in the 
Context of Biological Organisms?

Looking at cells as integrated systems and not as mere 
collections of parts
Seeks to understand how changes in any given component 
will affect the behavior of the entire system
Requires integration of information from molecular biology, 
biochemistry, physics and genetics to understand 
relationship between different sets of scientific data.
Goal is a “Higher order” understanding of life processes. 
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Molecular
parameters:
protein levels / states /
locations / interactions / 
activities

Cell
function:
death,
proliferation,
differentiation,
migration, ...

Systems Perspective

Ultimate aim:
Understanding 
and
prediction
of effects of
component 
properties
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Advanced 
Computation and 
Information 
Management

To understand 
organisms from a 
“systems perspective,” 
it is necessary to 
integrate a large 
quantity of information

Advanced 
High-Throughput 
Technologies

Metabolic and 
regulatory 
models

Theory

Analysis Experiment
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Computational Modeling Approaches
-- Diverse Spectrum

differential equations

statistical mining

Bayesian networks

SPECIFIED ABSTRACTED

Markov chains

Boolean models

relationships

mechanisms

influences *
(including
structure)

*
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Computer Models Allow Reconstruction of 
Processes Across Different Scales
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Disease MapDisease Map

Reference DatabaseReference Database

SimulationSimulation
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Variable Nature of Cells Confounds 
Structured Models of Systems

The lowest functional level of physiological models 
is the cell
It is relatively easy to specify a static input-output 
relationship of cells
How do we account for variable input-output state?
Dealing with recursive nature of cells is essential 
for creating realistic physiological models
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STATIC

DYNAMICComputational Biology

High-throughput 
Proteomics

Cell Dynamics Response Assays

Biological Organisms are Dynamic and Recursive

Cell “State”
(Proteome)

Genome

Input
(Environment)

Output
(Response)

Cell “State”
(Proteome)
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What, Where, Quantity, Quality?

What parts are being made? (identity)
Where are the proteins located in cell? (location)
What are their levels? (quantity) 
How do they interact with their partners? (activity)
" As a function of covalent modification
" Contribution of steric restrictions
" Forward and reverse rate constants

To successfully model a complex 
biological system, one must minimally 

know the following information:
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Cells are Regulated by a Network of Proteins
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What Is Necessary to Understand a Network?

Modeling & 
Analysis

Experimental 
Biology

Dynamic Range
(Kinetics)

Spatial Organization
(Transport)

Nodes 
(Components)

Connectivity
(Interactions)
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Proteomics is Essential for 
Understanding Cellular Behavior

One cannot adequately model or predict cellular 
responses UNLESS the proteome of a given 

cell is first specified!
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FTICR instruments provide unprecedented 
detail on the proteins expressed by cells 
under specific environmental conditions.

Unique method for rapid generation of 
synthetic antibodies using high-speed 

flow cytometers.

Proteomics Capabilities
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2-D display of detected peptides 

Mass

Global simultaneous quantitative proteome measurements
Proteins identified and quantified using Proteins identified and quantified using 

accurate mass and time (AMT) tagsaccurate mass and time (AMT) tags
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Problem Solving Environment
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Evaluating interaction 
networks with gene 

expression data

Courtesy of 
Trey Ideker
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Model of How Cells Respond to a 
General Stressor

Insult Interpret
Context

Response

Affect 
Neighboring 

Cells

U.S. Department of Energy
Pacific Northwest National Laboratory
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Autocrine Loops are Externalized Control 
Systems

What's out here?

*

Internal control loop

External control loop

Translation

Activity modification

Transcription*

What’s Out Here? External Control loop
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Our Tools: Modeling and Analysis
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Reconstituting an Autocrine Cell

pXER (EGFR)

pUHD10.3/TGFα (2nd Plasmid) pR8 (HistidinolR)

pUHD15.1neo (1st Plasmid)
L e g e n d :

Parental
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Fractional Capture of EGF
A
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!!

Ligand Comes Back to the Same Cell...
So What?

1) Autocrine ligands come back 
(transport models)

2) Bound receptor stimulates MAPK cascade 
(common knowledge)

3) MAPK cascade stimulates ligand release
(Fan & Derynck, 1999; Gechtman et.al,1999)

PLCγ
PI3K
MAPK
…..

Ligand release is autocatalytic

transport &
binding

signaling

release

m  µ1
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Inhibition
Activation

Slow Activation

EGFR Core Signaling Network
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Biochemical Reaction Scheme

Schoeberl et al., Nature Biotech. [2002]
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Signaling Through Growth Factor Receptors

Intracellular 
signaling cascade

Ligand
(Extracellular

molecule)

Membrane 
receptor

Physiological 
response

ACTUATORINPUT SENSOR OUTPUT
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High-level Model of MAPK Cascade

# three stages
# each stage operates near saturation
# Michaelis-Menten kinetics

0                                   1.5input

G-

1

0

Output

ultrasensitive 
response
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Model Autocrine Cell:
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Multiple Excitations in a Closed-Loop System

Autocrine Loops Modulate Extracellular Signals

?
Primary excitation: minutes
Secondary excitation: hours

⇓

Does this really happen?

0              1              2               3time, hr
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0

105

104

surface receptors

0                          15min

0.15

0.0

33

3

EE
E

p

p

+



37

Multiple Excitations (Experiment)
Dent et.al., Radiation Research, 2000

“Radiation-induced release of TGFα activates the EGFR and MAPK pathway in carcinoma 
cells, leading to increased proliferation and protection from radiation-induced cell death” 

receptor
(EGFR)

signaling
(MAPK)

protease
(ADAM ?)

ligand
(TGFα)

radiation

The model accounts for the secondary MAPK excitations 
in response to pulses of radiation
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TNFα Stimulates Two Waves of MAPK 
Activation

--ERK2-P2

--ERK2-P2

--Total ERK2
--Total ERK1

0 5’ 15’ 30’ 1h 2h 3h 4h 5h 6h 7h 8h

Time After TNFα Addition

TNFα

TNFα + Bat

TNFα + Bat
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Shedding Response is Graded
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Autocrine Signaling as a Control 
Circuit

EGF Receptor

Ligand
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Interrogative Signaling

???
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Information Processing at the Cell Surface

IF

AND

NOT

OR

AND

Transcription

MAPK
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\

Manipulate
Molecular Genetics
Chemical Genetics
Cell Engineering

Systematic Experiments

Model
Network Models

Mechanical Models
Biochemical Models

Quantitative Models

Measure
Array Technologies

Imaging
Bio-devices

Mine
Bioinformatics

Databases
Data Semantics

Proteomics
Genomics

Systematic experimentation:
• quantitative

• multi-variable

Computation: 
• elucidate hypotheses (mining)
• facilitate predictions (modeling)
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